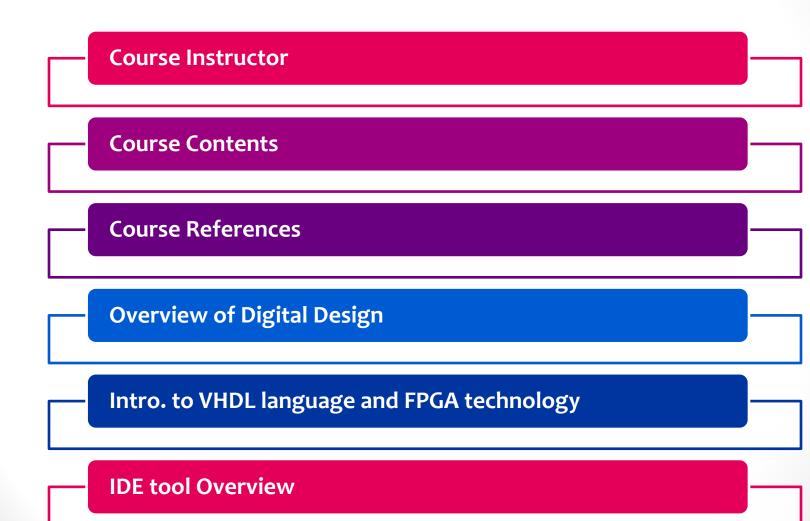
Designing with VHDL and FPGA

Instructor:


Dr. Ahmad El-Banna

LAB# 1 FALL 2016

Agenda

© Ahmad El-Banna

VHDL in Practice

2

Fall 2016

Course Instructor

Dr. Ahmad EL-Banna

- B.Sc. in Telecommunications and Electronics, Fac. of Eng. at Shoubra, Benha Univ. 2005.
- 9-month Diploma in Embedded Systems, ITI, 2008.
- M.Sc. in Telecommunications and Electronics, Fac. of Eng. at Shoubra, Benha Univ. 2011.
- PhD. in Telecommunications and Electronics, E_JUST Univ., 2014.
- Visiting Researcher, Wireless Communications Lab, Osaka University, 2013-2014.
- Find more at
 - www.bu.edu.eg/staff/ahmad.elbanna

Fall 2016

Your turn !

- About You
 - Graduation
 - Year
 - Univ.
 - ...

Fall 2016

VHDL in Practice

Fall 2016

Course Contents

- Introduction to VHDL language and FPGA technology
- Overview of digital design paradigms
- VHDL language constructs
- IDE tool Overview
- Data flow and Behavioral Implementation
- Statements (if, when-else, case, ...etc)
- Sequential Statements, Process and Variables
- Test benches
- Structural Implementation
- Designing various projects

VHDL in Practice

6

Fall 2016

Course References

- **RTL Hardware Design Using VHDL**, P. Chu,2006.
- The VHDL Cookbook, Peter J. Ashenden, 1st edition, 1990.
- VHDL Tutorial: Learn by Example by Weijun Zhang
 - http://esd.cs.ucr.edu/labs/tutorial/

OVERVIEW OF DIGITAL DESIGN

Fall 2016

Many Design Tasks

- System specification (functionality and requirements)
- Hardware/software trade-offs
- Architecture selection and exploration
- Analysis and simulation
- Synthesis and optimization
- Implementation
- Testing and design for testability
- Verification and validation (V-cycle!)
- Design management: cooperation between tools, design flow, etc.

2016

Design Objectives

- **Unit cost**: the cost of manufacturing each copy of the system, excluding NRE cost.
- NRE cost (Non-Recurring Engineering cost): The one-time cost of designing the system.
- **Size**: the physical space required by the system.
- **Performance:** the execution time or throughput .
- **Power:** the amount of power consumed by the system.
- **Testability:** the easiness of testing the system to make sure that it works correctly.
- Flexibility: the ability to change the functionality of the system without incurring heavy NRE cost.
- Correctness, safety, ... etc.

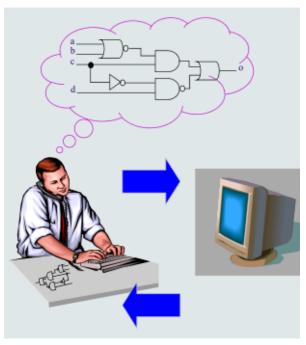
Fall 2016

The Main Challenges

- System complexity
- Increasing functionality and diversity
- Increasing performance
- Stringent design requirements
- Low cost and low power
- Dependability: reliability, safety and security
- Testability and flexibility
- Technology challenges for cost-efficient implementation
- Deep submicron effects (e.g., cross talk and soft errors)

Possible Solutions:

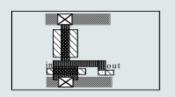
- Powerful design methodology and CAD tools.
- Advanced architecture (modularity).
- Extensive design reuse.

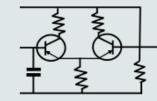

Fall 2016

DESIGN PARADIGMS

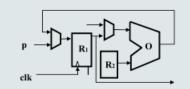
Fall 2016

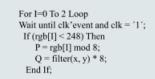
Capture and Simulate

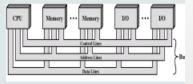

- The detailed design is captured in a **model**.
- The model is simulated.
- The results are used to guide the improvement of the design.
- All design decisions are made by the designers.

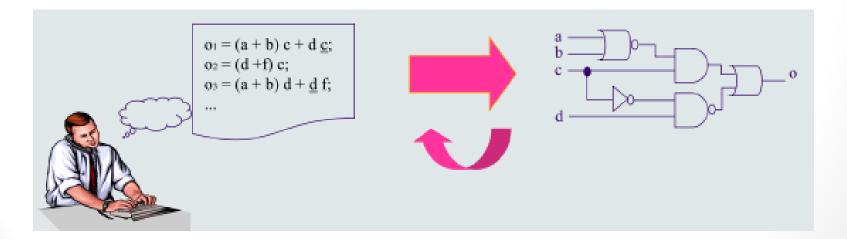



Fall 2016


Abstraction Hierarchy


- Layout/silicon level :
 - The physical layout of the integrated circuits is described.
- Circuit level :
 - The detailed circuits of transistors, resistors, and capacitors are described.
- Logic (gate) level :
 - The design is given as gates and their interconnections.
- Register-transfer level (RTL) :
 - Operations are described as transfers of values between registers.
- Algorithmic level :
 - A system is described as a set of usually concurrent algorithms.
- System level :
 - A system is described as a set of processors and communication channels.




VHDL in Practice

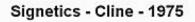
Fall 2016

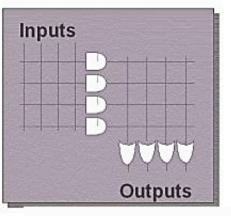
VHDL in Practice

Describe and Synthesize Paradigm

- Description of a design in terms of **behavioral** specification.
- Refinement of the design towards an implementation by adding structural details.
- Evaluation of the design in terms of a cost function and the design is optimized w.r.t. the cost function.

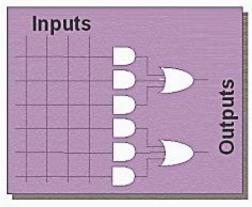
Other Paradigms


- Y-Chart
 - Behavioral, structure & physical domain
- Core-based Design
 - Reuse of IP blocks e.g. CPU, DSP,...
- Platform-based Design
 - Customized embedded processors or software


2016

16

History of Programmable Logic


- Two programmable planes
- · Any Combination of ANDs / ORs
- Sharing of AND terms across multiple OR's
- · Highest logic density available to user
- High Fuse count, Slower than PALs
- Programmable Logic Array PLA

PAL

MMI - Birkner - 1978

- One programmable plane AND / Fixed OR
- Finite combination of ANDs / ORs
- Medium logic density available to user
- Lower Fuse count, Faster than PLAs (at this time fabricated on a 10um process)
- Programmable Array Logic PAL

VHDL in Practice

17

Fall 2016

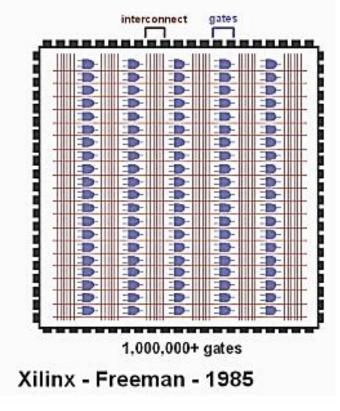

SPLD: Simple Prog

Simple Programmable Logic Devices

© Ahmad El-Banna

History of Programmable Logic CPLD Architecture

- Central, Global Interconnect
- Simple, Deterministic Timing
- Easily routed
- PLD Tools add only interconnect
- Wide, fast complex gating


Complex Programmable Logic Devices (CPLDs)

Fall 2016

History of Programmable Logic FPGA Architecture

- Channel Based Routing
- Post Layout Timing
- Tools More Complex than CPLDs
- Fine Grained
- Fast register pipelining

"What if we could develop the equivalent of a circuit board full of standard logic parts (like TTL & PAL devices) on a single high density programmable logic chip?"

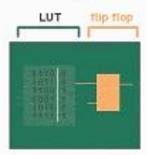
FPGA - Field Programmable Gate Array

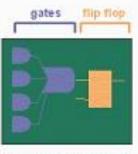
VHDL in Practice

19

Fall 2016

© Ahmad El-Banna


© Ahmad El-Banna


FPGA - Field Programmable Gate Array

2 types of FPGAs

- Reprogrammable (SRAM-based)
 - SRAM determines interconnect
 - SRAM defines logic in Look Up Table (LUT)
- One-time Programmable (OTP)
 - Interconnect is anti-fuse
 - Logic is traditional gates

SRAM logic cell

OTP logic cell

History of Programmable Logic Basic Logic Definitions

Standard Discrete Logic

 Fixed function devices which can be connected together to implement a system

PLD (CPLDs & FPGAs)

 Devices which can be re-programmed to implement any function within the device's resources

Gate Array (GA)

 Blocks of gates that are customized at the fab by adding layers of metal interconnects

Standard Cell (ASIC)

ICs designed with cell libraries. All mask layers customized at the fab

Fall 2016

Why FPGAs?

- Ideal for customized designs
 - Product differentiation in a fast-changing market
- Offer the advantages of high integration
 - High complexity, density, reliability
 - Low cost, power consumption, small physical size
- Avoid the problems of ASICs
 - high NRE cost, long delay in design and testing
 - increasingly demanding electrical issues

Fast Time-to-Market, fast response to market changes

> Fall 2016

VHDL in Practice

Fall 2016

FPGA Advantages

- Very fast custom logic
 - massively parallel operation
- Faster than microcontrollers and microprocessors
 - much faster than DSP engines
- More flexible than dedicated chipsets
 - allows unlimited product differentiation
- More affordable and less risky than ASICs
 - no NRE, minimum order size, or inventory risk
- Reprogrammable at any time
 - in design, in manufacturing, after installation

24

© Ahmad El-Banna

VHDL in Practice

Fall

2016

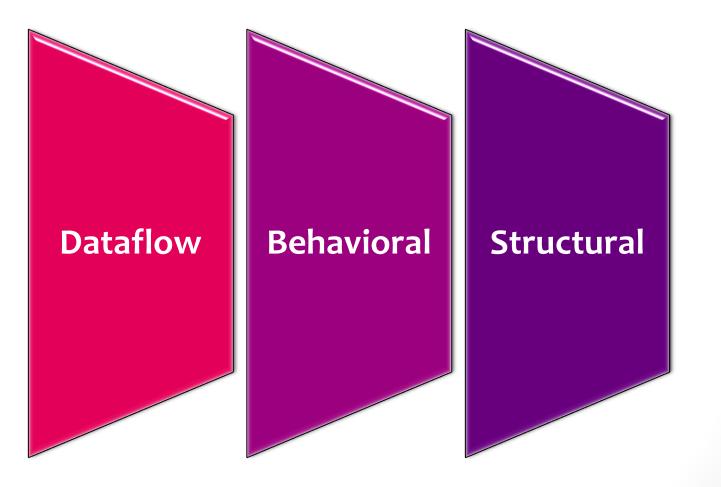
VHDL

- Hardware description languages (HDL)
 - Language to describe hardware
 - Two popular languages
 - VHDL: Very High Speed Integrated Circuits Hardware Description Language
 - Developed by US DOD from 1983
 - IEEE Standard 1076-1987/1993/200x
 - Based on the ADA language
 - Verilog
 - IEEE Standard 1364-1995/2001/2005
 - Based on the C language

Applications of HDL:

- Model and document digital systems
 - Different levels of abstraction
 - Behavioral, structural, etc.
- Verify design
- Synthesize circuits
 - Convert from higher abstraction levels to lower abstraction levels

Modeling Digital Systems


- VHDL is for coding models of a digital system...
- Reasons for modeling
 - requirements specification
 - documentation
 - testing using simulation
 - formal verification
 - synthesis
- Goal
 - most 'reliable' design process, with minimum cost and time
 - avoid design errors!

Fall 2016

Basic VHDL Concepts

- Main Terms
 - Interfaces -- i.e. ports
 - Behavior
 - Structure
 - Test Benches
 - Analysis, simulation
 - Synthesis
- VHDL is a programming language that allows one to model and develop complex digital systems in a dynamic environment.
- Object Oriented methodology -- modules can be used and reused.
- Allows you to designate in/out ports (bits) and specify behavior or response of the system.
- But VHDL is NOT C ... There are some similarities, as with any programming language, but syntax and logic are quite different.

3 ways to DO IT -- the VHDL way

Fall 2016

Modeling the Dataflow way

uses statements that defines the actual flow of data.....

such as,

x <= y -- this is NOT less than equal to -- told you its not C

this assigns the boolean signal x to the value of boolean signal y...

i.e. x = y

this will occur whenever y changes....

Fall 2016

Jumping right in to a Model

lets look at an *and gate* model -- doing it the dataflow way.....
 ignore the extra junk for now –

```
entity and gate is
port (a,b: in bit;
c: out bit);
end and gate;
```

```
architecture dataflow of and gate is begin
```

```
c<= a and b;
end dataflow;
```

2016

VHDL in Practice

Fall 2016

ISE Design Suite ® 14.2

JSE Project Navigator (P.28xd) - C:\Users\A3B2\tst_prj\tst_	_prj.xise - [Design Summary]					x
∑ File Edit View Project Source Process Tools Window Layout Help						×
🖸 🎓 🗹 🖌 🐂 🖉 🖉 😓 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉						
Design ↔ 🗆 🗗 🗙 🏑 🖨	gates_tst Project Status (08/04/2016 - 14:21:34)					
👔 View: 💿 🔯 Implementation 🔘 🧱 Simulation	📄 Summary 📄 IOB Properties	Project File:	tst_prj.xise	Parser Errors:	No Errors	=
Je Hierarchy	Module Level Utilization	Module Name:	gates_tst	Implementation	Placed and	
👔 🔤 tst_prj 🔍 🕑	Timing Constraints	i logale hame.	gates_at	State:	Routed	
k xc/a100t-3csq324	📄 Pinout Report	Target Device:	xc7a100t-3csg324	•Errors:	No Errors	
	Static Timing	Product Version:	ISE 14.2	•Warnings:	7 Warnings (7	
	Errors and Warnings				<u>new)</u>	
▼	Parser Messages	Design Goal:	Balanced	Routing Results:	<u>All Signals</u> Completely	
No Processes Running	Synthesis Messages			Results:	Routed	
Processes: gates_tst - Behavioral	P Mar Manager	Design	Xilinx Default	• Timing		
	sign Properties	Strategy:	(unlocked)	Constraints:		
— Design Utilities	Enable Message Filtering	Environment:	System Settings	• Final Timing	0 (Timing	
🕅 🖨 🏂 User Constraints	- Show Clock Report			Score:	Report)	
Create Timing Constraints	- Show Failing Constraints	J				
	- Show Warnings -		D	c	E 1	Ŧ
🍃 Start 🕫 Design 🖺 Files 🖺 Libraries 📡	Design Summary	×				
Console ↔ □ ♂ ×						
<pre>WINFO:HDLCompiler:1061 - Parsing VHDL file "C:/Users/A3B2/tst_prj/gates_tst.vhd" into library work</pre>						
INFO:ProjectMgmt - Parsing design hierarchy completed successfully.						
Launching Design Summary/Report Viewer						Ξ
						-
Console 🔇 Errors 🔔 Warnings 🗖 Find in Files	Results					

VHDL in Practice

Fall 2016

Build a vhdl module step1: Construct a new source

Select Source Type Select source type, file name and its location. BMM File ChipScope Definition and Connection File Implementation Constraints File IP (CORE Generator & Architecture Wizard) MEM File Schematic User Document Verilog Module Verilog Test Fixture Verilog Test Fixture VHDL Module VHDL Library VHDL Dackage VHDL Test Bench Embedded Processor	File name: not1 Location: D:\vhdl pro\Evenparityusingstructural
	Add to project

Build a vhdl module step2: Define the entity (i/o)

🚱 New Sc	ource Wizard	a an other sector.		-	d		×
Define Mod	ule						
Specify ports for	module.						
Entity name							
Architecture name	Behavioral						
	Port Name	Direction		Bus	MSB	LSB	_
a		in	•				
b		out	•				
		in	•				
		in	▼				=
		in	▼				
		in	•				
		in	▼				
		in	•				
		in	•				
		in	•				-
More Info				0	Next	Cancel	

Build a vhdl module step3: Define the architecture

📂 ISE Project Navigator (P.15xf) - D:\vhdl pro\Evenparityusingstructural\Evenparityusingstructural.xise - [not1.vhd*]					
📄 File Edit View Project Source Process Tools Window Layout Help					
□ 🖓 🖶 🖓 😓 🖌 🗅 🗅 🗶 🗢 🔍 🔎 🖉 🖉 🖉 🖉 🖉 🖉 🚱 🖉 🖉 🚱 🖉 🖉					
Design ↔ □ 🗗 × 🕢 🚺 17 Additional Comments:					
View:					
Hierarchy IP 20 Library IEEE;					
Evenparityusingstructural 21 use IEEE.STD_LOGIC_1164.ALL;					
Image: Structural index in the second content of					
Image: Second state Image: Second st	using				
Image: State of the state	alues				
27 Uncomment the following library declaration if 28 any Xilinx primitives in this code.	instantiating				
29 library UNISIM;					
30use UNISIM.VComponents.all;					
32 entity not1 is					
No Processes Running (3) 33 Port (a : in STD_LOGIC;					
No single design module is selected.					
36 37 architecture Behavioral of not1 is					
Design Utilities 36 36 37 37 architecture Behavioral of not1 is 38					
39 begin					
40					
41 b <= not a ;					
42 end Behavioral;					
43					
44					
Start Image: Start Image: Start	not1.vhd*				

VHDL in Practice

Fall 2016

VHDL in Practice

Fall 2016

- For more details, refer to:
 - VHDL Tutorial: Learn by Example by Weijun Zhang
 - http://esd.cs.ucr.edu/labs/tutorial/
 - "Introduction to VHDL" presentation by Dr. Adnan Shaout, The University of Michigan-Dearborn
 - The VHDL Cookbook, Peter J. Ashenden, 1st edition, 1990.
- For inquires, send to:
 - ahmad.elbanna@feng.bu.edu.eg